Computational design of synthetic gene circuits with composable parts

نویسندگان

  • Mario A. Marchisio
  • Jörg Stelling
چکیده

MOTIVATION In principle, novel genetic circuits can be engineered using standard parts with well-understood functionalities. However, no model based on the simple composition of these parts has become a standard, mainly because it is difficult to define signal exchanges between biological units as unambiguously as in electrical engineering. Corresponding concepts and computational tools for easy circuit design in biology are missing. RESULTS Taking inspiration from (and slightly modifying) ideas in the 'MIT Registry of Standard Biological Parts', we developed a method for the design of genetic circuits with composable parts. Gene expression requires four kinds of signal carriers: RNA polymerases, ribosomes, transcription factors and environmental 'messages' (inducers or corepressors). The flux of each of these types of molecules is a quantifiable biological signal exchanged between parts. Here, each part is modeled independently by the ordinary differential equations (ODE) formalism and integrated into the software ProMoT (Process Modeling Tool). In this way, we realized a 'drag and drop' tool, where genetic circuits are built just by placing biological parts on a canvas and by connecting them through 'wires' that enable flow of signal carriers, as it happens in electrical engineering. Our simulations of well-known synthetic circuits agree well with published computational and experimental results. AVAILABILITY The code is available on request from the authors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMPUTING SCIENCE Composable Modular Models for Synthetic Biology

Modelling and computational simulation are crucial for the large-scale engineering of biological circuits since they allow the system under design to be simulated prior to implementation in vivo. To support automated, model-driven design it is desirable that in silico models are modular, composable and use standard formats. The synthetic biology design process typically involves the composition...

متن کامل

Parts & Pools: A Framework for Modular Design of Synthetic Gene Circuits

Published in 2008, Parts & Pools represents one of the first attempts to conceptualize the modular design of bacterial synthetic gene circuits with Standard Biological Parts (DNA segments) and Pools of molecules referred to as common signal carriers (e.g., RNA polymerases and ribosomes). The original framework for modeling bacterial components and designing prokaryotic circuits evolved over the...

متن کامل

Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming

Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not det...

متن کامل

Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly

In vitro recombination methods have enabled one-step construction of large DNA sequences from multiple parts. Although synthetic biological circuits can in principle be assembled in the same fashion, they typically contain repeated sequence elements such as standard promoters and terminators that interfere with homologous recombination. Here we use a computational approach to design synthetic, ...

متن کامل

Automatic Design of Digital Synthetic Gene Circuits

De novo computational design of synthetic gene circuits that achieve well-defined target functions is a hard task. Existing, brute-force approaches run optimization algorithms on the structure and on the kinetic parameter values of the network. However, more direct rational methods for automatic circuit design are lacking. Focusing on digital synthetic gene circuits, we developed a methodology ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 24 17  شماره 

صفحات  -

تاریخ انتشار 2008